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Abstract

In order to model the dissipative effect due to variable forcing frequency, the authors presented in a
previous article an original method based on an additional dimension and on the relativity concept. The
associated metric of the space was identified experimentally, and the equation of motion was obtained from
geodesic equations. In the present article the equation of motion is formulated by using the Newtonian
approach. The total kinetic energy obtained has an original general expression that is reduced either to
Einstein’s energy in the presence of no variable forcing frequency, or to the classical expression in the case
of no relativist effects, and which validates the assumptions made on the metric. An experiment carried out
on a single-degree-of-freedom system is used to validate the approach.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Investigation on damping is a topical subject of research, since influential parameters such as
temperature, deflection, forcing frequency, and type of excitation make damping modelling
delicate and complicated [1–3]. In particular it is well known that a forced transient response
cannot be predicted with great accuracy if the evaluation of the damping is based only on steady
state measurement [4–7].
In order to improve existing mechanical models and to account for the effect of damping in

particular, the authors presented in a previous article [8] an original method based on an
additional dimension that involved the experimental identification of the associated metric of the
space, and the equation of motion obtained from geodesic equations, i.e., by minimizing the
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universe (the interval separating two successive positions of the mechanical system). This method
was applied to a single-degree-of-freedom (SDOF) mechanical system. The basic idea is that each
mechanical system has its own time, that depends on external events.
In the present article, the equations of motion are established by using the Newtonian approach

rather than by seeking the extrema of the functional universe.
Firstly, the metric of the space and the line element are presented. After classical considerations

on impulse and energy in the classical frame of reference, the impulse and equation of motion are
formulated in the proposed reference co-ordinate system ðx�1;x0; x1Þ [9–12]. Particular attention is
paid to the original expression of the energy in order to confirm the metric evaluation and define
its role. Finally, the transient forced response predicted with the proposed model is compared to
the experimental results of Ref. [8].

2. Additional dimension for the forcing frequency

In order to predict the dynamic behaviour of an SDOF system subjected to a variable forcing
frequency, let an orthogonal frame of reference be composed of three dimensions: a dimension of
space, a dimension of time and an additional dimension of frequency. It is practical to use
contravariant co-ordinates ðx�1; x0;x1Þ to define the position of a point in this space:

x0 ¼ iat and x1 ¼ u; ð1Þ

with i ¼
ffiffiffiffiffiffiffi
�1

p
; a being a reference high speed, t the time of the laboratory and u the displacement.

Let the first co-ordinate be an arc of a circle [13–15]:

x�1 ¼ iry; ð2Þ

where the radius r is defined by

r ¼
a

O
; ð3Þ

O being the natural frequency of the system.
In Eq. (2), variable y is the angle of a circle devoted to a curvilinear axis and related by forcing

pulsation o (forcing frequency n) by the following relation:

o ¼
dy
dt

¼ 2p
dn

dt
¼ 2pn: ð4Þ

According to the first Einstein axiom, see for example Ref. [16], the laws of physics are the same
in all frames of reference. Consequently, any new law must be invariable even if the forcing
frequency n is variable.
The metric tensor g of the three-dimension space is

g ¼

�qðNÞ 0 0

0 1 0

0 0 1

0
B@

1
CA; ð5Þ
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where function q which depends on N defined by

N ¼
Z

x dt; x; ’x

 �T

; ð6Þ

expresses the effect of a non-dimensional forcing frequency x ¼ o=O and of ’x ¼ dx=dt:
In order to define function q as well as possible, it is assumed that qðNÞ ¼ qðxÞ and that function

qðxÞ is nil in the three following cases:

* No forcing frequency, x ¼ 0:
* Resonance phenomenon, x ¼ 1:
* High forcing frequency x-N:

Consequently, the metric ds can be expressed using the metric tensor (5) taking into account
Einstein’s notation for the repeated indices:

ds2 ¼ �gmn dxm dxn; ð7Þ

or

ds2 ¼ qðxÞðdx�1Þ2 � ðdx0Þ2 � ðdx1Þ2: ð8Þ

Substituting x�1; x0; x1 by their expression (1) and (2), the line-element becomes

ds ¼ a dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2 � b2

q
; ð9Þ

where

l ¼ x
ffiffiffiffiffiffiffiffi
qðxÞ

p
and b ¼

’u

a
; ð10Þ

’u ¼ du=dt being the velocity of the system. The proper time t of the system defined by

dt ¼
ds

a
; ð11Þ

taking into account relation (9), can be related to the laboratory time t:

dt ¼ dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2 � b2

q
: ð12Þ

3. Impulse and energy in classical frame of reference

The equations of motion are derived taking into account the classical frame of reference
containing the classical dimension x1: Let Newton’s second law be applied along axis x1 to an
SDOF system of mass m subjected to external force F1:

d

dt
ðmv1Þ ¼ F1; ð13Þ
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or

dp1

dt
¼ F1; ð14Þ

where p1 ¼ mv1 is the impulse of the system. The multiplication of relation (13) by velocity

v1 ¼
dx1

dt
yields:

d

dt

mðv1Þ2

2


 �
¼ F1v1; ð15Þ

where the right-hand side is the power of the force while the left-hand side is the energy variation:

dE

dt
¼
d

dt

mðv1Þ2

2


 �
: ð16Þ

Therefore the total energy of the system is defined with the arbitrary constant E0:

E ¼
mðv1Þ2

2
þ E0: ð17Þ

Kinetic energy T ¼ mðv1Þ2=2 depends on the movement of the system. If the system is at rest with
no energy, E0 is nil. E0 stands for the total potential energy. In the presence of a potential field, the
system is subjected to a force F expressed by

F ¼ �gradUðx1Þ ð18Þ

with Uðx1Þ being the potential energy which obeys the relationship:

d
mv2

2


 �
¼ �dU : ð19Þ

4. Impulse in the proposed frame of reference

Now let P be the 3-impulse vector and F be the 3-force vector in the reference co-ordinate
system ðx�1; x0; x1Þ: The 3-impulse vector is:

P ¼ mU; ð20Þ

where U is the speed vector comprising the three following components:

Ui ¼
dxi

dt
; ð21Þ

and m is the invariant mass of the system. The third equation of the vector equation of motion in
ðx�1;x0; x1Þ follows Newton’s second law and can be written as

dP1

dt
¼ F1; ð22Þ

where P1 and F1 are the third components of the 3-impulse vector and of the 3-force vector
respectively. However, it is necessary to write the equation of the motion in the 3-dimension
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vectorial form due to Einstein’s first axiom [16]. By taking into account relation (20), Eq. (22)
makes possible the generalization in the frame of reference ðx�1; x0;x1Þ:

m
dUi

dt
¼ Fi; i ¼ �1; 0; 1: ð23Þ

The third equation of relation (23) and relation (12) between proper time and laboratory time
yields

m
dU1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� l2 � b2Þ
q

dt

¼ F1: ð24Þ

Let the third component of the 3-force vector in ðx�1;x0; x1Þ be

F1 ¼
F1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2 � b2
q ; ð25Þ

where F1; is the classical force along axis x1: Consequently, Eq. (24) takes a form similar to the
Newtonian equation. This can be verified by replacing F1 in Eq. (24) by its expression (25):

m
dU1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� l2 � b2Þ
q

dt

¼
F1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2 � b2
q : ð26Þ

Simplification leads to

d

dt
ðmU1Þ ¼ F1; ð27Þ

which, taking into account Eqs. (12) and (21) becomes

d

dt

mv1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2 � b2

q
0
B@

1
CA ¼ F1; ð28Þ

where the right-hand side contains the component of the classical force and in the left-hand side
the quantity,

P1 ¼
mv1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2 � b2
q ; ð29Þ

is logically called impulse, considering its first expression (20). In the absence of relativity effects,
l ¼ 0; b ¼ 0 and Eq. (28) is reduced to a classical Eq. (14).

5. Energy in the proposed frame of reference

The following energy considerations allow the identification of a general and original
expression of the total energy of an SDOF system subjected to a variable forcing frequency, by
validating the assumptions made on the metric and by defining the role of the energy.
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Eq. (8) divided by dt2 and relations (11) and (21) gives the following equation:

a2 ¼ qðxÞðU�1Þ2 � ðU0Þ2 � ðU1Þ2: ð30Þ

According to Eqs. (12) and (21) and taking into account the axes defined by Eqs. (1) and (2),
Eq. (30) can be expressed as follows:

a2 ¼ �
alffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2 � b2
q

0
B@

1
CA
2

þ
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2 � b2
q

0
B@

1
CA
2

�
v1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2 � b2
q

0
B@

1
CA
2

ð31Þ

which, after its own time derivative (or time derivative), its multiplication by constant mass m and
by virtue of Eq. (27), Eq. (31) becomes

�mla
d

dt

laffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2 � b2

q
0
B@

1
CAþ ma

d

dt

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2 � b2

q
0
B@

1
CA� v1F1 ¼ 0; ð32Þ

where quantity n0F1 is the time derivative of energy as expressed by Eq. (15). Consequently the
derivative of energy E can be formulated:

dE

dt
¼ ma

d

dt

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2 � b2

q
0
B@

1
CA� mla

d

dt

laffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2 � b2

q
0
B@

1
CA ð33Þ

which yields

E ¼ ma2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2 � l2
q �

Z
l
d

dt

lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2 � l2

q
0
B@

1
CA

0
B@

1
CA dt

0
B@

1
CA: ð34Þ

During the steady state resonance phenomenon, function q ¼ 0; and @q=@x ¼ 0 and the only
damping that remains is classical mechanical damping which is determined by carrying out a
bandwidth measurement. It is reasonable to assume that the function q and also l around the
resonance phenomenon are very small and that this can be extended to any mode of operation.
Assuming that lðtÞ ¼ eLðtÞ where e is a small quantity, the Taylor series expansion of Eq. (34)
around e ¼ 0 gives

E ¼
ma2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q ð1þ cðb; lÞÞ ð35Þ
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with

cðb; lÞ ¼
XN
k¼1

Gð1=2þ kÞffiffiffi
p

p
GðkÞ

1

k

lffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
0
B@

1
CA
2k0

B@
0
B@

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q Z
l

lffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
0
B@

1
CA
2k�2

d

dt

lffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
0
B@

1
CA

0
B@

1
CA dt

1
CA
1
CA: ð36Þ

It is obvious that the function cðb; lÞ is a very small quantity, which however contributes an
energy source of the dissipative effect in relation (35).
In the absence of variable forcing frequency, cðb; 0Þ ¼ 0; the energy is reduced to Einstein’s

energy:

EE ¼
ma2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q : ð37Þ

Moreover in the case of no motion, relation (36) becomes:

cð0; lÞ ¼ 0: ð38Þ

Therefore energy (35) is reduced to the energy at rest:

ER ¼ ma2: ð39Þ

This section devoted to consideration on energy validates the assumptions made related to
function q: Moreover it should be noted that in Eq. (35) an additional energy EA expressed by

EA ¼ E � EE ¼ cðb; lÞEE ; ð40Þ

can become a dissipative energy when cðb; lÞ becomes negative.

6. Response of a low-speed SDOF system subjected to a variable forcing frequency

6.1. Equation of motion

The derivation of relation (28) gives the equation that governs the dynamic behaviour of the
SDOF system:

m .uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2 � b2

q þ
ðl’lþ b ’bÞm ’u

ð1� l2 � b2Þ3=2
¼ F1: ð41Þ
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By using relations (10), the equation of motion (41) becomes

m .uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qx2 � b2

q þ
q þ

x
2

@q

@x


 �
x’xþ b ’b


 �
m ’u

ð1� qx2 � b2Þ3=2
¼ F1: ð42Þ

In the presence of forces applied on the mass such as viscous force (�c ’u; c being the damping
coefficient), restitution force (�ku; with k the stiffness), and excitation force f ðtÞ; the resulting
force applied is

F1 ¼ �c ’u � ku þ f ðtÞ: ð43Þ

Assuming that the mechanical system studied is propelled by a low speed ’u regarding the speed
of reference a; relations (10) cause b2 to be neglected regarding the unity. Therefore, Eq. (42) can
be simplified:

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qx2

q .u þ
x’x q þ

x
2

@q

@x


 �
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� qx2Þ3

q þ c

0
BB@

1
CCA ’u þ ku ¼ f ðtÞ: ð44Þ

The inertia force depends in particular on x while the dissipative force also depends on ’x; the
variation of the forcing frequency. In the case where qðxÞ is nil, Eq. (42) is reduced to the classical
Newtonian equation of motion, the additional dimension vanishes and the space becomes flat.
In the case where qðxÞ is not nil, solving Eq. (44) requires determining function qðxÞ: The

application concerns an in-plane spring–pendulum system presented in Ref. [8]. Its parameters
expressed in displacement u; correspond to

m ¼ 23:3 kg; c ¼ 14:0 Ns=m; k ¼ 528;840 N=m; ð45Þ

that induce a 24 Hz undamped natural frequency.
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6.2. Determination of function qðxÞ

In Ref. [8] function qðxÞ is determined by comparing the transfer function measured and
predicted by the following steady state equation:

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qx2

q .u þ c ’u þ ku ¼ f0 sinðo0tÞ; ð46Þ

where f0 sinðo0tÞ is the constant harmonic force (with constant amplitude f0 and constant
frequency o0). The qðxÞ function obtained by the measurement around the resonance
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phenomenon is extrapolated, Fig. 1, with the formula

qðxÞ ¼ 0:0018
ð1� e�15x

2

Þð1� e�ðx�1Þ2Þ

1þ x3
ð47Þ

formulated by using the least square technique and the assumptions made in Section 2.
Consequently it induces a change of function lðxÞ shown in Fig. 2. It should be noted that in the
case of resonance phenomenon or free motion the additional dimension plays no role, the motion
has no influence on the space and the classical approach is sufficient to model the problem.
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6.3. Response to a variable forcing frequency

The SDOF system is subjected to the measured force, shown in Fig. 3, which has a variable
forcing frequency estimated to be linear from 0 to 150 Hz within a 4-s time interval. The excitation
force is introduced in the model by using its Fourier expansion.

F ðtÞ ¼
a0

2
þ

X500
n¼1

an cos
2np
T

t


 �
þ bn sin

2np
T

t


 �
 �
ð48Þ

with T ¼ 4 s: The result is shown in Fig. 4.

ARTICLE IN PRESS

0 1 2 3 4
-0.2

-0 .1

0

0.1

D
is

pl
ac

em
en

t (
m

m
) 

0.2

Time (s)

Fig. 6. Predicted with the proposed model (dark line) and measured (grey line) responses of the SDOF system.

0.5 1 1.5

-0.1

-0.05

0

0.05

0.1

0.15

D
is

pl
ac

em
en

t  
(m

m
)

Time (s)

Fig. 7. Zoom of Fig. 6; key as Fig. 6.

A. Al Majid, R. Dufour / Journal of Sound and Vibration 270 (2004) 833–845 843



6.3.1. Classical model

The classical model corresponds to Eq. (44) with q ¼ 0; for any value of x: The time integration
is performed with the Newmark method and a 0:0007 s time step. Fig. 5 presents the predicted
(classical model) and measured displacements. A considerable deviation is observed after the
resonance phenomenon. A smaller time step, other integration methods and a non-linear model
did not improve the predicted response. In Ref. [8] it was shown that the higher the variation of
the forcing frequency, the higher the deviation is.

6.3.2. Proposed model
The proposed model corresponds to Eqs. (44) and (47). The time integration uses the Newmark

method and a 0:0007 s time step. Fig. 6 presents the predicted (proposed model) and measured
displacements. The zoom presented in Fig. 7 exhibits the quality of the prediction performed with
the proposed model. Moreover, it is interesting to plot in Fig. 8 the time history of the damping
factor to show its dependence on the change in the forcing frequency.

7. Conclusions

It has been shown that the variable forcing frequency introduces a damping effect in the
dynamic behaviour of an SDOF system. The original model proposed uses the concept of
relativity. A dimension corresponding to the forcing frequency is added to the classical co-
ordinate frame of reference which by consequence becomes non-flat. The equation of the motion
of an SDOF is formulated by analyzing the impulse, the Newtonian approach and by making
assumptions on the metric of space confirmed by considerations on energy. The total kinetic
energy obtained has an original general expression that is reduced either to Einstein’s energy in
the presence of no variable forcing frequency or to the energy at rest in the case of no relativist
effects. The proposed method, contrary to the classical model, permits taking damping into
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account thus giving quite good prediction of the displacement of the SDOF system studied. The
forced response predicted with the proposed model is validated experimentally.
It can be concluded that an external parameter that deforms the space is a source of force,

which in the case of an excitation at variable frequency, corresponds to a damping.
Rotordynamics is an applicative illustration of a possible relapse of the results. A rotor subjected
to a high transient motion (start-up or shutdown) has a lateral deflection influenced by a damping
force created by the time-varying speed of rotation.
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